Hybrid, Nanoscale Phospholipid/Block Copolymer Vesicles

نویسندگان

  • Seng Koon Lim
  • Hans-Peter de Hoog
  • Atul N. Parikh
  • Bo Liedberg
چکیده

Hybrid phospholipid/block copolymer vesicles, in which the polymeric membrane is blended with phospholipids, display interesting self-assembly behavior, incorporating the robustness and chemical versatility of polymersomes with the softness and biocompatibility of liposomes. Such structures can be conveniently characterized by preparing giant unilamellar vesicles (GUVs) via electroformation. Here, we are interested in exploring the self-assembly and properties of the analogous nanoscale hybrid vesicles (ca. 100 nm in diameter) of the same composition prepared by film-hydration and extrusion. We show that the self-assembly and content-release behavior of nanoscale polybutadieneb-poly(ethylene oxide) (PB-PEO)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) hybrid phospholipid/block copolymer vesicles can be tuned by the mixing ratio of the amphiphiles. In brief, these hybrids may provide alternative tools for drug delivery purposes and molecular imaging/sensing applications and clearly open up new avenues for further investigation. OPEN ACCESS Polymers 2013, 5 1103

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultralong gold nanoparticle/block copolymer hybrid cylindrical micelles: a strategy combining surface templated self-assembly and Rayleigh instability.

Ultralong cylindrical micelles impregnated with gold nanoparticles were fabricated via the convergence of a surface-templated self-assembly method and the fragmentation of gold nanowires driven by Rayleigh instability. This approach could be proposed as an unconventional method for the fabrication of hybrid nanomaterials.

متن کامل

Giant phospholipid/block copolymer hybrid vesicles: mixing behavior and domain formation.

Lipids and block copolymers can be individually assembled into unsupported, spherical membranes (liposomes or polymersomes), each having their own particular benefits and limitations. Here we demonstrate the preparation of microscale, hybrid "lipopolymersomes" composed of the common lipid POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine) and the commercially available copolymer PBd-b...

متن کامل

Interaction between polyether- poly (2-dimethylaminoethyl methacrylate) copolymers and phospholipid model vesicles – implications for gene delivery efficiency

Our previous studies have demonstrated that surfaceactive copolymers of Pluronic® surfactants and tertiary amino polycations such as poly (2-dimethylaminoethyl methacrylate) (PDMA) possess an enhanced DNA transfection efficiency compared to PDMA homopolymers. In order to understand the mechanism of such action, we conducted model studies of the interaction of polymer with phospholipid vesicles ...

متن کامل

Aqueous self-assembly of poly(ethylene oxide)-block-poly(ε-caprolactone) (PEO-b-PCL) copolymers: disparate diblock copolymer compositions give rise to nano- and meso-scale bilayered vesicles.

Nanoparticles formed from diblock copolymers of FDA approved PEO and PCL have generated considerable interest as in vivo drug delivery vehicles. Herein, we report the synthesis of the most extensive family PEO-b-PCL copolymers that vary over the largest range of number-average molecular weights (Mn: 3.6-57k), PEO weight fractions (fPEO: 0.08-0.33), and PEO chain lengths (0.75-5.8k) reported to ...

متن کامل

Correlative infrared nanospectroscopic and nanomechanical imaging of block copolymer microdomains

Intermolecular interactions and nanoscale phase separation govern the properties of many molecular soft-matter systems. Here, we combine infrared vibrational scattering scanning near-field optical microscopy (IR s-SNOM) with force-distance spectroscopy for simultaneous characterization of both nanoscale optical and nanomechanical molecular properties through hybrid imaging. The resulting multic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013